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INTRODUCTION

I THINK I shall not be far from the truth in saying that most of the work
in theoretical aerodynamics, except some rare "happy" cases of exact
solutions, consists of simplifying general equations of aerodynamics in
such a way that an analytical, or relatively easy numerical, solution of
those simplified equations can be obtained.

The advent of electronic computers allowed us to set them the task
of solving nonsimplified equations numerically, to a given accuracy in
sufficiently general cases. In new branches of technique, such as for
atomic physics and automatic control, electronic computers are widely
used. I would say that in these branches computation is the basic method
in investigations and design. Considering the rapid development of
modern science, aerodynamics can be regarded as an old science. The
methods of aerodynamical investigations had been established long before
electronic computers appeared. They were mainly experimental methods
(S.A.S. wind-tunnel experiments), which took only similarity laws from
theoretical aerodynamics. Now, however, aerodynamics is undergoing
revolutionary changes.

Till recently aerodynamics was a part of mechanics whose basic laws
were established by Euler and Navier—Stokes. Modern aerodynamics
encroaches upon the domains of chemical kinetics, kinetic theory of
gases and electrodynamics. Differential equations of aerodynamics
become much more complicated and I doubt whether it is possible to
construct experimental equipment which will enable one to go directly
from model experiments to actual testing, as it has been up to now.
It seems very probable that in future aerodynamics, experiments will
give only basic relations and constants while aerodynamic and thermal
characteristics (missiles, sputniks, cosmic rockets) will be calculated.

In view of this I consider it very important to work out the methods
of solution of non-simplified equations of aerodynamics for use on
electronic computers. As the first step in this direction in the Computing
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Center of the Academy of Sciences of the U.S.S.R. and some other
institutes, the problem was set to develop the methods of solving the
equations of classical aerodynamics using electronic computers. The
most difficult problems here are mixed problems, where in some parts
of flow velocities are subsonic (elliptic subdomain) and in others, super-
sonic (hyperbolic subdomain).

This report considers some results obtained in the solving of these
problems.

DESCRIPTION OF THE METHOD

1. The partial differential equations of physics and mechanics that
express certain laws of conservation (of mass, energy, charge, etc.) can
be in many cases represented in a "divergence" form. With two inde-
pendent variables the equation is written as follows

aPi(x, y; u1, 112, . . . un) aQi(x, y; u, u2, . . •,un)

( x

= Fi(x, y; u1, u2, . • .,
(1)

1, 2, . . n)

Here x, y are the independent variables, u1, . . un the sought values,
P,, Qi, Fi are the known functions of their arguments.

Now we consider the solution of system (1) in the rectangular region
a x b, c y d with the boundary conditions

at x = a(v , ui, • • •, fin) — 0 (y = 1, 2, . . k)

at x = b u . . u„) = 0 (v = k + 1, k + 2, . . n)

at y =  c ul, . . un) = 0 (y = 1, 2, . . b)

at y =  d 1,b„ (x, ul, . . tin) = 0 (y = 1 + 1, 1 + y, . . n)

In a particular case the rectangular mav degenerate into a semi-band
(h = oo) or a band (a = -- cc, b = -; cc).

Now we divide the region into N bands with the lines parallel to the
axis x (y = yk, k = 1, 2, . . N — 1). For the sake of simplicity we
consider the bands to have equal width. Then we integrate each equation
of system (1) across each band. As a result we obtain a system of integral
relations

YAi YA:i

d ,
—dx riciy — Qi,k = F dy (4)

(i = 1, 2, . . n; k 0, 1, 2, . . N 1 = c yN = d)

where Qi, k is the value of function Qi at y =  yk. If now for the functions
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Pi, Ft we apply any interpolation formula expressing the value of P(F)
at any y through its values on the lines y = yk and integrate it we shall
obtain:

Yk:1

I Pi dy = 8 Ak (8 = d — c)
k

Yk:

dy =  8 1,
.=0

CoefficientsAk, a are the numbers which are dependent on the inter-
polation formula chosen.

Substituting expressions (5) into the integral relations (4), we obtain a
system of ordinary differential equations:

d = N

8 Ilk Pi,,Qi, Qi, "61k,ux

(i = 1, 2, .. n; k = 0, 1, 2, . . N — 1) (6)

Together with boundary conditions (3) we shall have n (N ± 1) equa-
tions with regard to n (N 1) of unknown functions 111,k (1 = 1, 2, .. n;
k = 0, 1, 2, . . N), where is the value of function zii at y = yk.


The boundary conditions (2) will give those for the system of ordinary
differential equations (6) (3).

The solution of the system of equations (6) + (3) obtaineig when the
region is divided into N bands will be called by us an N-approximation.

2. Now we consider the class of rather frequent problems in which
the region where a solution is sought is indefinite.

Let the region, in which a solution of system (1) is to be found, be
limited by the straight lines x = a, x = b, y = 0 (a can be — oo,  h can
be + co) and by a curve y = 6 (s) which itself is to be determined. In
this case the system of boundary conlitions (3) should be "over-deter-
mined", i.e. contain one additional condition.

at y = 0 (x, ui, 8) = 0 (y = 1, 2, . . 1)
(3a)

at y = 8 (x)  u„ . . 8) = 0 (y = 1 1, 1 2, .. n ± 1)

(Some of the conditions (3a) can also be differential.)
Then the process of composing the approximating systems is analogous

to the first case.
Now we divide the region into N curvilinear bands by lines

Y = Yk = 8 (x)

(5)
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and integrate system (1) by y across each band. We obtain n .N of
integral relations

dx A'

d Pidvh +P( '
k+ Pi ' k) 8' (x) Qt. k

1

Yr

(i  = 1, 2,  n ; k  0, 1, 2, . . ., /V — 1)

Applying interpolation formulas to the functions Pi and Fi, we shall
have for the integrals the expressions (5) which, being substituted into
the integral relations (7), give an N-approximation system.

— (8 A
dx=1:1

h
— P Q 0i. k

= 6 -I F (8)
0

(i  1, 2, ..  n; k  0, 1, .  1)

System (8), together with boundary conditions (3a), gives n  (N+1)+1
equations with regard to n (N + 1) - I- 1 sought functions lli, k (i == 1,
2, . .  n; k =  0, 1, 2, . . N) and 8  (x).

3. The method analogous to the one jv described can also be applied
in the case when the region is not limited by y (e.g. d ==

In such cases the sought functions !Lk are usually imposed by certain
conditions of attenuation, limitation or gradual convergence to given
values. Then in composition of approximating systems we can introduce
artificial thickness of disturbance region 8 (x) extending on it the con-
ditions from infinity. If, for example, functions un (all or part of them)
are converging to zero or to constant values, these conditions should be
transferred to the line v =  8  (x) and, if necessary, we add certain addi-
tional conditions, sav, the condition of gradual convergence i',uirey  = 0
at y = 8) so as to obtain a complete system of boundary conditions.

Thickness of disturbance region 8  (x) having been introduced, the
solution process goes on as in the previous case. Of course, when the
number of approximation N is increased, 8 (x) will now not be converging
to a definite function, but will grow unlimitedly.

Concluding the general description of the method, I would like to
note that this method should not be regarded as a universal prescription.
The task of a practician is to obtain a rather accurate solution of a concrete
problem with a minimum investment. If we have chosen the method
described for the solution the problem must be prepared in such a way that

A.S. (voL. 2)-18
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the method gives a good result already w, ith a small approximation number,
of N. But how to do this is already a question of the mathematician's art.
I think that no universal prescriptions at all can exist here.

As for all other methods, the successful transformation of the initial
system of equations, and the choice of a coordinate system and of a
system of sought functions is of great importance. The choice of inter-
polation formulas for the transition from integral relations to the system
of ordinary differential equations is essential in practice.

As to the convergence of the method in a usual meaning of the word,
it can be, for the time being, successfully proved only for the simplest
linear cases (as it also takes place for the method of straight lines). In
practice we applied this method to the solution of nonlinear systems of
partial differential equations and obtained the judgment on the con-
vergence only by means of comparing the results of the calculations for
successive number of approximation.

I shall illustrate it below on the examples of the solution of concrete
problems.

Finally I note that the method of reducing the partial differential
equations to systems of ordinary differential equations is convenient for
the application on electronic computers because comparatively it little
overloads the computer's storage unit.

Example

Let us consider the solution of a system

au av

Cy ax

(9)

— (1 x)u — 0
Cx

within a semi-band

x 0, 0 v 1.

This system represents an example of a mixed system: when x < 1,
the system is elliptical, and, when x > 1, the system is hyperbolical. It
can be considered as the simplest mathematical model for the problem
of flow with detached shock-wave. Giving functions u or v on the
boundary of the region in the elliptical part determines a continuous
solution over the whole elliptical part of the region and in the hyperbolic
part up to the characteristics proceeding from points (1, 0) and (1, 1) (see
Fig. 1). At the same time giving functions u or v on the boundary of the
band when x > 1 in no way influences the solution in the above deter-
mined part of the region (ABCDE in Fig. 1). Let us see how this
property manifests itself in the solution by method of integral relations.
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A
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FIG. I

For complete clearness we take concrete boundary conditions.

at x = () u = 0
at y = 0 v 0 (10)
at y = 1 u = x

The integral relations used for the construction of a system of ordinary
differential equations, for the first approximation, can be written as
follows

—d y dy — u, uo = 0
dx

0

— (1 — x) u dy f- y, = 0
dx

0
where uo is the value of  u  at y = 0

u1 is the value of  u  at y = 1
y, is the value of y at y = 1
vo = 0 is the value of v at y = 0.

Using ordinary interpolation in the form of polynorns, we obtain for
the first approximation

u = uo (u, — uo)y v = . v
and the system of ordinary differential equations will assume the following
form

dv,


dx
2u1 2u0 = 0

u,) 2y1 = 0

or, since, according to (10) u, = x

dv,
— 2u, = 2x
dx

(12)

d
—x(1 — x) uo + 2y1 = 2x — 1
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The boundary conditions (10) give only one condition, u„ (0) = 0.
But the point x = 1 is a point of singularity of the system (12). The

requirement of continuity of the solution in the transition through the

 transition line

(x 1) imposes an additional condition for the uniquitv
of the solution of system (12). This continuous solution has obviously
the form

1 /, [4 \ (1 - x)]

	

110 X -
\ (1 -- II (4)

(13)
3 /„ [4 \ (1 x)]

	

v, 2x
2 /1 (4)

The solution in any approximation is constructed analogously.
This example has been given in order to illustrate the specific features

of the solution of mixed problems. It is characteristic of them that the
boundary conditions in the hyperbolic part of the region do not influence
the solution in the so-called region of influence (in our example, the
region ABCDE). In approximate treatment this fact is manifested in
that, for the system of ordinary differential equations, no boundary
conditions are available at the right hand (on the side of the hyperbolic
region). The uniqueness of the solution is provided by the demand of
its continuity in the transition through points of singularity.

RESULTS OF THE SOLUTION OF SOME
AERODYNAMICAL PROBLEMS

The method described has been applied to the solution of a number
of problems of high-speed aerodynamics.

I shall cite the results of the calculations of three problems:
Subsonic flow past ellipses and ellipsoids. This work has been

carried out by P. I. Chushkin, a scientific worker of the Computing
Center, The Academy of Sciences of the U.S.S.R.

Flow past ellipses with a sonic velocity at the infinity. This work
has also been carried out by P. I. Chushkin.

Supersonic flow past a circular cylinder. This work has been carried
out by O. M. Bielotserkovsky, a scientific worker of the Computing
Center.

In the first case the equations are written in elliptical coordinates. It
is enough to find the solution in one quadrant. In elliptical coordinates
the region is transformed into a semi-band

co,

Interpolation formulas are taken in the form of trigonometrical
polynoms. The calculation results are shown in Figs. 2, 3.
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FIG. 2. The values of the critical 1\Lich number for ellipses and ellipsoids

versus relative thickness 6 with different approximations.

Fic. 3. Velocity distribution past circle at critical Mach number for


different approximations.

In the second case the region in which the solution is sought is limited
by the abscissa axis, by ellipse surface and by the unknown limiting
characteristics of the first family going to infinity. The calculation results
are shown in Figs. 4, 5, and 6.

C •
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In the third case the region in which the solution is found is limited
by the shock wave (whose shape is unknown), by the section of abscissa
axis and by the surface of the circular cylinder. Since the problem is
mixed, the fourth boundary is absent and the uniqueness of the solution
is provided by the demand of continuity of solution in the transition
from the elliptical into hyperbolical part of the region in the same manner
as in the example we have considered. The calculation results are shown
in Figs. 7, 8, 9, 10, and 11.

Sonic line
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FIG. 4. The scheme of composition of integral relations for calculation

of flow past circle at free-stream Mach number M,  = 1.
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FIG. 5. Mach number distribution past circle at free-stream Mach


number M„ = 1.
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FIG. 6. Mach number distribution along axis of symmetry and limiting

characteristic for circle at free-stream Mach number M„ — 1 for

different approximations.

r. 1+E(0)

Shock wove —
Line/of singularity: W  2 = +

i ,O, r =1
(uo .0)

a) N.1

b)N. 2

i=0,r=1

c) N.  3

Fic. 7. The scheme of composition of integral relations for calculation

of supersonic flow past circle with detached shock wave.
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Shock wave
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FIG. 8. The flow past circle at free-stream Mach number M , 3 for
3 d approximation.
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FIG. 9. Shock waves and sonic lines for circle at different free-stream

Mach numbers.
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FIG. 10. Shock wave for circle at free-stream Mach number M  --- 4 as

compared with the experiment.
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FIG. 11. Pressure distribution past circle at free-stream Mach number

M  --= 3 as compared with the experiment.
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DISCUSSION

H. H. PEARCEY*: For the case of the circular cylinder with detached shock

wave, the agreement that Mr. Dorodnicyn showed us between his theoretical

results and experimental ones was most impressive. We shall be most interested

to know whether similarly good agreement is obtained for a two-dimensional

aerofoil at a free-stream Mach number of 1.0, and, if so, whether this holds for a

lifting aerofoil. Also, I look forward to comparing his results for aerofoils with

ones that would be given for the same shapes by a semi-empirical method

developed by C. S. Sinnott at the N.P.L. and shortly to be published in the
Journal of the Aeronautical Sciences.  We adopted this semi-empirical approach

because hitherto we have not found any purely theoretical method that will give

physically realistic results and good comparison with experiment. If, as seems

likely, the method now presented to us will do this, then it should be of great

value in producing results for specific shapes and, probably, more important

still, in elucidating the essential mechanism of these flows.

In our work on two-dimensional aerofoils, aimed at deriving section shapes
for improved performance and delayed boundary-layer separation on sweptback

wings, we attached considerable importance to the surface pressure distribution

at M = 1.0, because for each particular shape it characterises the distribution

that will be obtained in the locally supersonic flow upstream of the shock wave

for lower free-stream Mach numbers.

Sinnott, in an extension of his work mentioned above, has used this fact in the

prediction of pressure distributions for lifting aerofoils at Mach numbers below

FO, when the shock wave impinges on the surface between the leading and trailing

edges, instead of at the trailing edge as at _V/ -- 1.0. Again in this case, Sinnott's

method predicts results that are so far the only ones that we have found to be

physically realistic and to agree well with experiment. Can Mr. Dorodnicyn

say whether his method can be used for such cases ? If so, then again it should

be of great value, in this instance for the derivation of optimum section shapes

for sweptback wings on which both leading and trailing edges are behaving

subsonically.

A. A. DORODNICYN: I. The mathematical problem discussed in my report is

the solution of differential equations of aerodynamics for free-stream Mach

number = 1 in the domain bounded by the first characteristics going to infinity.

For the complete solution of the problem of flow about an aerofoil the usual

method of characteristics must be used behind the mentioned characteristics.

The presence of shock waves between the leading and trailing edges makes

impossible the use of the method of characteristics.

2. The author of the work on flow about a profile by Mach number 1 (P. I.

Chushkin) had no experimental result in his disposition exactly corresponding

to the calculated cases.

However, taking into account the known experimental result that in the vicinity

of Mach number 1 the distribution of local Mach numbers depends slightly on

free-stream Mach number, one can conclude that calculations are in good co-

incidence with experiment.

* Aerodynamics Division, National Physical Laboratory, England.




